Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mid-Infrared Emitters Utilizing Intersublevel Transitions in Self Assembled InAs Quantum Dots

Identifieur interne : 003D08 ( Main/Repository ); précédent : 003D07; suivant : 003D09

Mid-Infrared Emitters Utilizing Intersublevel Transitions in Self Assembled InAs Quantum Dots

Auteurs : RBID : Pascal:10-0430700

Descripteurs français

English descriptors

Abstract

We demonstrate room temperature electroluminescence from intersublevel transitions in self-assembled InAs quantum dots in GaAs/AlGaAs heterostructures. The quantum dot devices are grown on GaAs substrates in a Varian Gen II molecular beam epitaxy system. The device structure is designed specifically to inject carriers into excited conduction band states in the dots and force an optical transition between the excited and ground states of the dots. A downstream filter is designed to selectively extract carriers from the dot ground states. Electroluminescence measurements were made by Fourier Transform Infrared Spectroscopy in amplitude modulation step scan mode. Current-Voltage measurements of the devices are also reported. In addition, both single period and multi-period devices are grown, fabricated, characterized, and compared to each other. Finally, we discuss the use of plasmonic output couplers for these devices, and discuss the unique emission observed when the quantum dot layer sits in the near field of the plasmonic top contacts.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0430700

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mid-Infrared Emitters Utilizing Intersublevel Transitions in Self Assembled InAs Quantum Dots</title>
<author>
<name sortKey="Ribaudo, T" uniqKey="Ribaudo T">T. Ribaudo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Passmore, B S" uniqKey="Passmore B">B. S. Passmore</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sandia National Laboratories, P.O. Box 5800</s1>
<s2>Albuquerque, NM 87185</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87185</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, D C" uniqKey="Adams D">D. C. Adams</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, X" uniqKey="Qian X">X. Qian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vangala, S" uniqKey="Vangala S">S. Vangala</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goodhue, W D" uniqKey="Goodhue W">W. D. Goodhue</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shaner, E A" uniqKey="Shaner E">E. A. Shaner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sandia National Laboratories, P.O. Box 5800</s1>
<s2>Albuquerque, NM 87185</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87185</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lyon, S A" uniqKey="Lyon S">S. A. Lyon</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, NJ, 08544</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wasserman, D" uniqKey="Wasserman D">D. Wasserman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lowell, MA 01854</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0430700</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0430700 INIST</idno>
<idno type="RBID">Pascal:10-0430700</idno>
<idno type="wicri:Area/Main/Corpus">003D40</idno>
<idno type="wicri:Area/Main/Repository">003D08</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Arsenides</term>
<term>Aluminium arsenides</term>
<term>Ambient temperature</term>
<term>Amplitude modulation</term>
<term>Binary compounds</term>
<term>Current measurement</term>
<term>Electroluminescence</term>
<term>Fourier transformation</term>
<term>Gallium Arsenides</term>
<term>Ground states</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Measuring methods</term>
<term>Molecular beam epitaxy</term>
<term>Plasmonics</term>
<term>Quantum dot devices</term>
<term>Quantum dots</term>
<term>Self-assembly</term>
<term>Semiconductor lasers</term>
<term>Ternary compounds</term>
<term>Voltage measurement</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electroluminescence</term>
<term>Modulation amplitude</term>
<term>Transformation Fourier</term>
<term>Autoassemblage</term>
<term>Epitaxie jet moléculaire</term>
<term>Courantométrie</term>
<term>Méthode mesure</term>
<term>Température ambiante</term>
<term>Etat fondamental</term>
<term>Point quantique</term>
<term>Hétérostructure</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Semiconducteur III-V</term>
<term>Composé ternaire</term>
<term>Aluminium Arséniure</term>
<term>Gallium Arséniure</term>
<term>Arséniure d'aluminium</term>
<term>Mesure tension électrique</term>
<term>Plasmonique</term>
<term>Laser semiconducteur</term>
<term>InAs</term>
<term>GaAs</term>
<term>Substrat GaAs</term>
<term>As In</term>
<term>As Ga</term>
<term>AlGaAs</term>
<term>0130C</term>
<term>4255P</term>
<term>Dispositif point quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We demonstrate room temperature electroluminescence from intersublevel transitions in self-assembled InAs quantum dots in GaAs/AlGaAs heterostructures. The quantum dot devices are grown on GaAs substrates in a Varian Gen II molecular beam epitaxy system. The device structure is designed specifically to inject carriers into excited conduction band states in the dots and force an optical transition between the excited and ground states of the dots. A downstream filter is designed to selectively extract carriers from the dot ground states. Electroluminescence measurements were made by Fourier Transform Infrared Spectroscopy in amplitude modulation step scan mode. Current-Voltage measurements of the devices are also reported. In addition, both single period and multi-period devices are grown, fabricated, characterized, and compared to each other. Finally, we discuss the use of plasmonic output couplers for these devices, and discuss the unique emission observed when the quantum dot layer sits in the near field of the plasmonic top contacts.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7616</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mid-Infrared Emitters Utilizing Intersublevel Transitions in Self Assembled InAs Quantum Dots</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers IX : 25-28 January 2010, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RIBAUDO (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PASSMORE (B. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ADAMS (D. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>QIAN (X.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VANGALA (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOODHUE (W. D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHANER (E. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LYON (S. A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>WASSERMAN (D.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BELYANIN (Alexey A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SMOWTON (Peter M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Dept. of Physics and Applied Physics, University of Massachusetts Lowell</s1>
<s2>Lowell, MA 01854</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Sandia National Laboratories, P.O. Box 5800</s1>
<s2>Albuquerque, NM 87185</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, NJ, 08544</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>76161A.1-76161A.12</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8012-5</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-8012-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174684560290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0430700</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We demonstrate room temperature electroluminescence from intersublevel transitions in self-assembled InAs quantum dots in GaAs/AlGaAs heterostructures. The quantum dot devices are grown on GaAs substrates in a Varian Gen II molecular beam epitaxy system. The device structure is designed specifically to inject carriers into excited conduction band states in the dots and force an optical transition between the excited and ground states of the dots. A downstream filter is designed to selectively extract carriers from the dot ground states. Electroluminescence measurements were made by Fourier Transform Infrared Spectroscopy in amplitude modulation step scan mode. Current-Voltage measurements of the devices are also reported. In addition, both single period and multi-period devices are grown, fabricated, characterized, and compared to each other. Finally, we discuss the use of plasmonic output couplers for these devices, and discuss the unique emission observed when the quantum dot layer sits in the near field of the plasmonic top contacts.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Electroluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electroluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modulation amplitude</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Amplitude modulation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transformation Fourier</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fourier transformation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Courantométrie</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Current measurement</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Corrientimetría</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Méthode mesure</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Measuring methods</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etat fondamental</s0>
<s5>42</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ground states</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>52</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Aluminium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>61</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Mesure tension électrique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Voltage measurement</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Plasmonique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Plasmonics</s0>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>64</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>64</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Dispositif point quantique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Quantum dot devices</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>284</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers</s1>
<s2>09</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003D08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0430700
   |texte=   Mid-Infrared Emitters Utilizing Intersublevel Transitions in Self Assembled InAs Quantum Dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024